
The Case of Intent Network for Collective Intelligence

THE AUTHORS
Making two cites[1, 2] in the abstraction to make it compiles.

1 Motivation
Blockchains are monolithic solutions for the three essentials: ordering, execution and finality. sgd:
More well-known name for finality is consensus, but the meaning of consensus goes blurry as it

goes popular. This fact itself is not a bad thing, even a good thing: these are all critical for building

usable and trustable applications, while an all-in-one is always superior modular (at least in the

sense of audience perception).

It is bad for the other fact that, in blockchains, these three functionalities are in lockstep. It orders
one, it executes one, and it finalizes one. And only after what it can order the following ones. Yes

there is batching, but the utilization of batching 1. exactly implies the demand of avoiding lockstep

2. is not a scalable solution and comes with inherent latency penalty. Hetu aims real time usages. So
we don’t consider the cases that can tolerate long latencies and can be simply solved by batching.

There are always active research and solutions on relieving execution from this lockstep i.e.

offchain computation. We believe that those solutions are generalized/generalizable so that as long

as blockchains can make use of them Hetu can do so as well. This working document mostly focus

on the ordering part.

Theoretical limit on improving finality. Finality inherently comes with shared mutable states, i.e.
the decisions that reach consensus. The mutations on the states must be propagated to the whole
network sequentially, otherwise the states may go diverged. So we are/will be eventually trapped

by the propagation speed on the finality performance.

The alternative workaround is to build elite networks. Under Ethereum context it is the network

of stakers (or even just a subset of all stakers that (are allowed to) participant a specific round of

proposal). By shrinking the scope of propagation to just the elites, finality gains more efficiency.

sgd: Ethereum probably claims the sole purpose of PoS is to be more power efficient than PoW, but

I believe this reasoning on the performance of finality must also come into the play.

This solution implies homogeneity. Only in a homogeneous system we can reach consensus a
priori on who are elites. Again under Ethereum context all stakers must stake the same kind of

token i.e. Ether. Hetu aims heterogeneous scenarios. We believe that in Hetu, the mechanism of

finality should be everyone equally, without any qualification, because it’s impossible to define the

qualification policy reasonably in a heterogeneous system i.e. everyone is qualified for different

tasks and commitments. The finality must be propagated to everyone in the same way.

The globally-unique proposer is subjective, and that results in bad quality ordering service. sgd: The
argument here needs further streamlining, probably refers the presence of MEV as an evidence,

and draw conclusion that ordering must be performed in an intersubjective way.

sgd: Eigenlayer’s intersubjectivity whitepaper i.e. EIGEN token can be a supporting evidence of

the necessity of introducing intersubjectivity in ordering mechanism. It may be worth to consider

their “forkable” solution as an alternation to Hetu and discuss their drawbacks, but hopefully their

drawbacks are obvious to many.

The vision. Hetu proposes a modular approach for achieving all three of ordering, execution and

finality. Especially, while finality inherently provides ordering i.e. based on the order of finalization,

we deliberately deprecate that order and roll out our own ordering mechanism that is in real time,
compatible with heterogeneity and intersubjective. Hetu will eventually be general purpose, but

we start small, package it as solutions for certain vertical cases. sgd: Somehow we first propose a

Bitcoin that later extend it into (or reveal that it is actually) Ethereum. This working document

focus on the case of financial markets. We should definitely look at some other cases simultaneously

e.g. machine learning stuff.

2 L1 Sequencer: a Motivated Example of Dedicated Ordering Mechanism
sgd: The material here will be a mind experiment. The details need further polish, and not sure

whether it helps in the narrative. But anyway, it is supposed to be an intermediate step to help

understand the ordering/finality separation without involving unfamiliar concepts like partial

ordering, brokers, etc.

3 Approach
The only-for-finality mechanism. The chain structure in blockchains corre-

sponds to its inherent ordering functionality. To clearly draw the difference

between them and the finality mechanism in Hetu, we explicitly change the

representation from “a chain of blocks” to “a (unordered) set of blocks”. sgd:

Or “a bag of blocks” if that is more vivid. sgd: Blockbag? :)

The append-only property of blockchains is expected to be preserved,

though. Anything (or any block) that has been finalized is expected to not

get “de-finalized” indefinitely. This property directly enables blockchains

to execute the blocks in the finalization order, and Hetu also relies on it.

The “append” here seems to imply the ordered direction. Since our finality is

unordered, maybe should call it insert-only, while the logical clocks are the ones that append-only,
to draw a clear distinction.

Since the finality mechanism in Hetu requires a subset of blockchains functionalities, blockchains

can certainly serve as the finality mechanism. If necessary we may conduct research on alternative

finality mechanisms, but blockchains, especially Ethereum, are probably good enough for now.

What is getting ordered? In blockchains it’s “blocks” that are getting ordered, and inside the

blocks it’s “transactions” that are ordered (subjectively) by the blocks’ proposers. The two-layer

design is purely for performance optimization (i.e. batching) and has no practical meaning, to we

can ignore the outer layer and simply say it’s transactions that are getting ordered.

The meaning of transaction, though heavily overloaded, probably implies finality. In Hetu what

get ordered has no finality (yet). It is only finalized when it has been submitted to the finality

mechanism, not upon ordered. In another word, they are not transactions “yet” upon ordered,

and they may or may not “turn into” transactions depending on whether they will eventually be

finalized.

In the logical clock related introductions we usually put it as it’s “events” that get ordered. Since

we are describing a financial market solution here I would realize the concept as quotes, preorders
or letters of intent, and intents to refer them as a whole. It’s probably fine to reuse transaction to

refer what has been submitted for finality.

sgd: After adding theAI case the above financial termsmay not appliable universally. Nevertheless,

quotes, preorders and (the most focused) intents still sounds appropriate.

The properties of ordering. sgd: If necessary (which probably is), discuss the rationale behind

these properties. What bad things can happen if we don’t have them?

• Share-nothing distributed. The ordering mechanism itself does not require propagation

i.e. communication across the whole system. In another word, Hetu does not forcefully

2

push the ordered intents, like how blockchains push the ordered blocks, to the nodes. Nodes

certainly need to actively pull the intents that are involved in the orders they would propose,

and that is on demand. The system shares nothing more than the minimum. sgd: In previous

discussions this has been referred as “laziness” or “lazy consensus”. Those words are also

not bad in precision, and we can use them if they are better marketing terms.

• Optimal parallelization, this is closely related to the previous. More than one node can

contribute to the ordering concurrently/simultaneously, and if necessary every node can

contribute at the same time. This is completely on the opposite to the blockchains, where

at most one node can contribute to the ordering at any time i.e. the qualified proposer of the

round.

No matter when, no matter where, no matter whom in the Hetu system wants to order no

matter what, they can do it immediately, without waiting for anything e.g. becoming the

proposers.

• Verifiable and append-only. These are the revisiting properties of blockchains. They are

necessary to preserve the finality through all ordered intents. The following explains this

more in action.

The cooperation. The ordering mechanism forms a par-
tial ordering among the intents. Notice that although we

represent the partial ordering as a single graph in the

illustration, the graph is not shared in reality. In another

word, (probably) no one in Hetu actually get to know

the whole graph. Everyone can only learn it partially,

according to their point of view.

However, everyone’s partial view is guaranteed to be

compatible to the other’s one. Every partial view is a

subgraph of the whole graph. And if you merge all subgraphs together, you just get the whole

graph back, without any risk of confliction. sgd: Well, these material may be a bit too technical, try

rephrase it more comprehensively.

If anyone wants to finalize an intent i.e. “make a deal” according to it, they submit the intent to

finality. As we stated above, finality mechanism in Hetu is an insert-only bag of intents. Effectively,

the finalitymechanism endorses the intents by inserting them into the consensus bag. The transitivity

of Hetu’s partial ordering extends the endorsement to a larger set of intents. sgd: This happens

to match the transitivity closure concept in mathematic. (Well, not completely accidentally, I have

designed it in this way.) Make use of this fact if having a proper formalization helps in some way.

What important is that the extended endorsement is finalized. Although finality mechanism

does not explicitly finalize every endorsed intents, it is safe to consider all of them finalized, thanks

to the verifiable and append-only properties of the ordering mechanism. As the result, Hetu’s

ordering mechanism becomes an amplifier for finality. Hetu not only enables real time ordering,

3

but also more finality. We believe that nodes can only be incentivized to propose ordered intents

that will be finalized (probabilistically), just like they can only be incentivized to propose blocks if

the blocks will be chained. With our ordering mechanism design, the fact that the ordering is not

happening inside finality mechanism doesn’t change the fact that the ordering still can be finalized,

so Hetu does not expose challenges in economics.

sgd: Weird material above, probably fits somewhere else.

Intents do conflict. That’s why finality does not endorse every submitted intent, but only the

compatible ones. What intents are compatible is application specific, which is a topic elaborated in

the following section. In the worst case, intents that do not reside on the same chain all conflict

to each other. Those are the applications that essentially make use of shared mutable states, and

they would better directly deploy on blockchains. We expect our targeted applications to have

few contentions on the finality, but every finality involves a lot of collaboration efforts, and the

willingness of the collaborations all come with preconditions, or assumptions. This sounds a lot

abstract, but as shown below, finance can be one such case.

sgd: Personally I’m already satisfied by describing “what we are good for” in one sentence,

regardless of the abstractness.

4 Case Study: Decentralized Finance
System overview. The imagined financial market is a lot like what crypto exchanges can do today.

Users mostly trade tokens and their derivatives in the market. Trading offchain merchandises

are possible, and the security mechanism is nothing particular to today’s offchain solutions e.g.

producers submit a proof of finished the work to the chain and get rewarded from smart contracts,

or challengers submit a proof of producers not finishing the work to the chain to get slashing

rewards from smart contracts.

The users are categorized into dealers and customers, based onwhether they are providing offers or
accepting ones. Dealers may not be (long) sellers; they can on short position and provide offers to buy

merchandises from the others. We will use the standard terms of Hetu in the following discussion.

The dealers are further categorized as producers who produce the (chains of) quotes (either for sale

or purchase), and broker who produce derivatives. The customers are called consumers.

For simplicity, we only discuss trading onchain merchandises here, and we only consider deploy-

ing to Ethereum, so the tokens would be ERC-20s and NFTs. Those are directly transact-able on

Ethereum through interacting with smart contracts, and the advantages of Hetu mirrors the ones

stated in our vision:

• Real time. It’s not as simple as “the transaction can be made faster”. Because the transaction

eventually still happen on the chain, and we are not doing things like preconfirmation

to assure anything. The “real time” here means real time reaction. Hetu allows user to

action much more frequently than the finality frequency, and those are additive actions that

eventually contribute to the same finality. More details later.

• Heterogeneous. In plain Ethereum system brokers are homogeneous i.e. they are just smart

contracts. In Hetu how brokers work is completely unspecified. It’s all hidden to the

blockchain.

• Intersubjective. sgd: This one I haven’t got it clear. Skip for now.

Advantage over current L1 exchanges. They are centralized.

Design overview. Most of the communication/“brokerage”/potential negotiation happens offchain.

The intermediate “intents” are accumulated with logical clocks. As soon as the intents are turning

into a “deal”, the payers submit the final logical clocks and their payments to the smart contract for

4

finality. After the finality, the payee(s) also consult the smart contract with their logical clocks as

proof to receive their rewards. These consultations can be made asynchronously and periodically

batched, to reduce the overhead of interacting with the chain.

Example: a deal. The producer sells an NFT A for 1ETH. It (offchain) publishes a quote intent

(A = 1ETH). The consumer buys the NFT, by submitting to Hetu smart contract with the (logical

clock of) quote intent and 1ETH. The producer later submits to Hetu smart contract with the same

logical clock (and the smart contract is able to verify that the producer is the owner of the clock)

and receive 1ETH from the contract. The contract also transfer the ownership of NFT A to the

consumer.

In this minimal case there’s no benefit of making use of Hetu. A simple smart contract that

transfers both NFT and ETH will conclude the interaction in single transaction.

Example: a match. Producer 1 sells 1ETH for 3500USDT. sgd: Current market price from Google.

Producer 2 buys 1ETH with 3501USDT. The consumer generates a match intent with a logical

clock merging both quotes, and sends it to producer 2. Producer 2 submits to Hetu smart contract

with 3501USDT payment. Later producer 1 and consumer individually consult the contract and

get 1USDT and 3500USDT respectively. Consumer also transfers 1ETH to producer 1 during the

consultation.

sgd: Why producer 2 should submit the transaction, not producer 1 or consumer? sgd: Why pays

3501USDT not 1ETH? sgd: Is this a consumer or broker? Are these producers or consumers? sgd:

I’m not good at designing a market...

In comparison, with plain Ethereum the matching engine will be a smart contract e.g. uniswap.

The matching logic is public and (what’s worse) it must be expressible with smart contract. You

cannot perform a subjective matching, not even an intersubjective one. And further, producer 1 and

producer 2 need to both interact with the matching contract. That probably cannot take place in

the same block (without any speculation). However in Hetu they may have adjusted their quotes

for arbitrary many times before the matching is accomplished, and all those communications can

happen right within 12 seconds.

Example: a derivative. sgd: Work in progress. Not sure whether it’s necessary to have one more

example. A single-layer derivative should be much similar to the match, and a more deeply nested

one would be too complicated to illustrate.

What is ordered? (again). There are different concepts of ordering in a financial system. Although

we can generalize all of them into “A only if B” form, but it’s worth to perform a case study.

The first kind is temporal ordering. Consider the price of certain merchandise. It changes, and the

current price is certainly after its price from previous timestamp. In Hetu we represent the quote

intents as “conditional quotes with expiration”. The interpretation is “the price of the merchandise

is $X, and the price is only valid 1. before the current block (hashed Y) reaches depth Z in the chain

and 2. all previous quotes of the merchandise were not finalized”. Finality mechanism checks for

the requirements before endorsement, to prevent a merchandise to be sold more than once. The

producers may repeatedly propose quotes for their merchandises until they are sold.

The second kind is derivative ordering. An index intent can be “the price of the index is $X,

and the price is only valid while all indexed quotes are valid”. sgd: Intents for options can be a bit

more tricky, since it involves quote intents that will be proposed in the future. We can design for

them later. Notice that all of these are not actually transactions, but instead somehow “I would

like to transact with X if Y would like to transact with me”. The “letters of intent” in this form are

perfectly composable and can be arbitrary nested. When a highly-nested intent is finalized, a lot of

intermediate transactions are finalized at once. In a blockchain system all these intermediate steps

5

have to happen on chain, incurring high latency and lots of gas overhead. While in Hetu, only one

intent is submitted for finality regardless of the number of intermediate steps. This means perfect

scalability.

The last kind is transaction ordering. This is the ordering of mutating states. If two consumers

buy the same merchandise, the transaction ordered first will success and the other one must be

aborted. In the baby step described in this working document, the market states are remained

on chain (though a lot of intermediate states are skipped), so such ordering corresponds to the

ordering of finalization. Hetu is not responsible for it and simply leaves it on the chain.

There will be parallelization opportunities to explore in the transaction ordering. As a patch we

may design certain derivative to ad-hoc bundle transactions into “mega-transactions”, which make

profit by reducing gas fee during finality. Don’t know for sure whether that works.

Current limitations. There’s no offchain computation in current design. Actually, all offchain

states are intermediate, ephemeral and fine to be unreliable. sgd: probably Since financial is neither

computational heavy (in the sense of processing transactions themselves, not making decisions of
transacting or not) nor data heavy (ideally just one balance number per account), going offchain

may not benefit much.

However, not persisting states outside the chain also means we will not have our own economics.

The settlements will be in ERC-20 and there’s no necessity to roll out our own token. I think we

probably still can make money in some way without our own token, but others (probably) may not.

And after all, this is contrary to the vision states previously i.e. blockchains as unordered finality,

nothing more. It’s more like an incremental contribution to current blockchain systems i.e. yet

another offloading/rollup solution (while substantially differs from current rollups). This is good

for bootstrapping, but we probably should move on later.

Sketch of smart contract design. The contract’s main task is to verify logical clocks. The verification

results come with the determined ordering, and specific verification semantics should be integrated

case by case. Finally, the contract is the temporal token holder for outstanding transactions, to

enable asynchronous interaction with the chain. sgd: Also enable us to make money from the

system.

Take calls for an example. The consumer interacts with blockchain first, submits an intent of

either a quote or a derivative of some intents, indicating that the consumer is willing to call with

certain amount of tokens. The contract performs several checks, including whether the intent is

equipped with a valid logical clock, whether the call conflicts with previous calls, and the other

ordinary checks e.g. whether consumer account has sufficient balance. If all checks pass, the contract

transfer the tokens from consumer account to the contract account, and finalize the intent.

sgd: Work in progress.

5 Case Study: Collaborative AI
Motivation and system overview. The end users of AI market consumes AI services/products e.g.

conversation sessions, content generation, etc. Currently, the services are scheduled / orchestrated /

assembled mostly by single party. sgd: Having difficulty choose the best word... In another word,

there’s a centralized participant that contacts all the other participants in the systems, namely

GPU owners, model creators, and end users. This one-stop architecture does not enable the full

competition market and the optimal configuration of resources.

The root cause of today’s centralized architectures is the difficulties of efficiently collaborate

in real time. Suppose A users own GPUs and B users owns models. Without further assistance, it

is hard for the individuals of either A users or B users to ad hoc find each other in real time that

matches i.e. the GPUs must be capable to inference the models. Both of them cannot fulfill user

6

demands alone. As the result, the cooperation must be negotiated ahead of time and be longstanding,

which in turn requires heavier trust mechanism e.g. staking.

In Hetu none of the participants need to take care of the whole workflow. The consumers,

brokers and producers concept from §4 are also applied in this case. The producers provide GPUs

and other AI hardware. The consumers purchase AI services by contacting one of the brokers who

announce to provide the services. Those brokers, however, provide end user services based on the

model inference services provided by other brokers. And those brokers that support inference rent

the hardware from producers. The logical clocks, which order the intents all over, enable such

collaboration despite every participant only works locally.

Example: oneshot query. Producer A announces intent of 10s GPU time for 1USDT. Broker B

announces a conditional intent of “as long as A fulfills its intent to me, I provide a llama model

inference of any input for 1.01USDT”. Broker C announces a conditional intent of “as long as B

fulfills its intent to me, I can answer a professional question for 1.02USDT”. (C achieves this by

sending special prompts to the model during inference.) Consumer D thinks “ok I have a computer

science professional question to ask and I’m willing to pay 1.02USDT”. Then D submit the intent

announced by C and 1.02USDT to the Hetu smart contract on the chain.

After C’s intent has reached finality on the chain, C takes D’s question, combined with its special

prompts that can make llama model act as a computer science professor, together send to B. B

then perform inference with its llama model on A’s GPU. After the task is done and the proof

of work is generated (or after a while no one challenges that the work is not done correctly), A,

B and C interact with Hetu contract on the chain with their original intent logical clocks. The

contract verifies their logical clocks are based by the one submitted by D (or is the same one, for

C’s case). And transfer corresponded tokens according to the intents. Thus, A, B and C receives

1USDT, 0.01USDT and 0.01USDT each.

What are the clocks used for? Logical clocks are crucial in the workflow above for multiple

purposes.

• B, C and D verifies the single logical clock from its immediate predecessors, and conclude

that all previous intents are verified.
• Smart contract verifies A, B and C’s clocks, and the relation between their clocks and the

D’s one, conclude that they should be paid.

• A, B and C can interact with the smart contract in arbitrary order, arbitrarily after the

transaction was finalized (i.e. D submitted). Hetu removes the necessities of synchronously
interact with the chain for all the intermediate steps.

Other than constructing conditional intents, the clocks can also be used for local ordering. For

example, A may announce intents of every 10s of its GPU times, and each intent is ordered after

the previous one. So that if another broker E has its intent based on a latter intent of A (based on

A’s ordering), then E can only utilize A’s GPU after B is done.

Discussions. There’s no security model here. In reality we need to specify one, even if it’s “yes

we don’t have security” that still need to be decided.

The division of GPU providers and model providers are impractical. If models must be sent to

GPUs owners in clear text, models will not be confidential, and that’s a lot of network overhead.

References
[1] V. Buterin. A Next-Generation Smart Contract and Decentralized Application Platform. https://ethereum.org/en/

whitepaper/, 2014.

[2] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, 2009.

7

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://bitcoin.org/bitcoin.pdf

	Abstract
	1 Motivation
	2 L1 Sequencer: a Motivated Example of Dedicated Ordering Mechanism
	3 Approach
	4 Case Study: Decentralized Finance
	5 Case Study: Collaborative AI
	References

